Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data

نویسندگان

چکیده

We evaluate a number of different finite-element approaches for fluid–structure (contact) interaction problems against data from physical experiments. This consists trajectories single particles falling through highly viscous fluid and rebounding off the bottom tank wall. The resulting flow is in transitional regime between creeping turbulent flows. type configuration particularly challenging numerical methods due to large change domain contact wall particle. In simulations, we consider both rigid body linear elasticity models particles. first case, compare results obtained with well-established Arbitrary Lagrangian–Eulerian (ALE) approach an unfitted moving method together simple common avoidance. For full (FSI) problem contact, use fully Eulerian combination unified FSI-contact treatment using Nitsche's method. higher computational efficiency, geometrical symmetry experimental setup reformulate FSI system into two spatial dimensions. Finally, show three-dimensional ALE computations study effects small perturbations initial state particle investigate deviations perfectly vertical fall observed experiment. are implemented open-source finite element libraries, made freely available aid reproducibility.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid.

A simple and fast numerical method is developed capable of accurately determining the 3D rotational dynamics of a magnetic particle chain in an infinite fluid domain. The focus is to control the alternating breakup and reformation of the bead chain which we believe is essential to achieve effective fluid mixing at small scales. The numerical scheme makes use of magnetic dipole moments and exten...

متن کامل

Vibration analysis of a rectangular composite plate in contact with fluid

In this paper, modal analysis of the fluid-structure interaction has been investigated. Using classical laminated plate theory, a closed form solution for natural frequencies of FSI is extracted. For fluid, homogenous, inviscid and irrotational fluid flow is assumed. Then, a combined governing equation for the plate-fluid system is derived. In order to validate the equations and results, they a...

متن کامل

Viscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers

In this paper, symmetric water entry of twin wedges is investigated for deadrise angle of 30 degree. Three numerical simulation of a symmetric impact, considering rigid body dynamic equations of motion in two-phase flow is presented. The two-phase flow around the wedges is solved by Finite Element based on Finite Volume method (FEM-FVM) which is used in conjunction with Volume of Fluid (VOF) sc...

متن کامل

Experimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids

In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulenc...

متن کامل

Cochlear perfusion with a viscous fluid.

The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2021

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0037971